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From the theoretical side, it has often been shown irrefutably to us practical physicians
that all our conclusions about advantages and disadvantages of individual treatment
methods, provided that they are based on the statistics of the actual success, are
completely vague as long as we do not apply the strict rules of probability calculus.
In fact, if the observed outcomes have been more favourable in one treatment than in
another, this may just as well be based on chance as it is undoubtedly based on chance if,
in a game of hazard with equal chances, one person wins today and the other tomorrow.
The simple fact that 20 of 100 patients died with one treatment method and 10 of 100
patients died with the other one, does not in itself prove that the second treatment
method deserves to be preferred, and does not give any certainty that perhaps 30 of 100
will die next time this second treatment method is used. If we want to draw conclusions
from the actual successes, the inevitable prerequisite to do so is to examine how large
the probability is that the observed differences in success are not simply due to chance.
And for this question only probability calculus gives the necessary indication.

Certainly, with the accomplishment of this mathematical and formal part, our task is
far from being completed. Rather, the question then arises as to whether the two series
of observations, in which the difference in success occurred with different treatment,
can really be regarded as comparable in every other respect. There might have also
been a decisive change in the character of the disease, in the intensity of the cause of
the disease, whether a change in the various other moments, on which the outcome
of the disease may depend, has not caused the differences in the observed success. It
would be wrong to demand the solution of this task from a mathematical analysis. The
probability calculus shows us with all sharpness in which degree of probability it can

*The present work is essentially a chapter from a lecture about the main features of probability calculus
applied to medicine and natural sciences.
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be assumed that there was a difference in the constant conditions on which success
depends. But it is completely incapable of giving any statement about the nature of
this difference. The study of the causes, and the question of whether these are to be
sought in the diversity of treatment or in the diversity of other constant conditions, is a
matter for clinical analysis.

This latter and more difficult part of the issue has usually been treated with sufficient
care and thoroughness in the better works in which therapeutic statistics have been
used. This leads to the fact that the conclusions drawn often do not allow any objections
from this side. In contrast, the purely formal mathematical part of the task has usually
not been touched at all in these works. And yet it cannot be denied that the completion
of this is the necessary precondition for the utilization of the observation.

The reason why physicians have made so little use of probability calculus so far

is not so much that they have not given this discipline the importance it deserves.

Rather, it is mainly based on the fact that the analytical apparatus has so far been too
incomplete and inconvenient. Up to this point an admirable acumen has been applied
by mathematicians to the elaboration of the methods necessary to solve the problems
of probability calculus. Some parts of probability calculus, such as those which are
important for the insurance industry, as well as individual methods which can be
applied to the results of the observed natural sciences — I recall the method of least
squares — have been perfected to such an extent that even the non-mathematician is
able to use them with little difficulty. — To date, those analytical methods which would
preferably be of use to the medical profession have not enjoyed the same degree of
diligence. In particular, the application of probability calculus to therapeutic statistics
has not yet been elaborated to the extent that the problems that occur can be solved with
sufficient reliability. Mathematicians usually approach this problem only indirectly, but
do not deal with it in a straight matter. Furthermore, what the non-mathematician has
so far been offered in the form of practically applicable formulas cannot be regarded as
an exact and comprehensive solution to the problem, but only as an alternative, which
can provide a sufficient approximation to a solution in individual cases, but fails in
most cases that occur in practice.

The present problem has been discussed most thoroughly by Poisson. Although
even this mathematician does not approach the task in a direct manner, the admirable
mastery of the analytical methods by which he is distinguished has enabled him to
produce relatively simple formulas which, within certain limits, allow calculation to be
carried out with sufficient approximation. Certainly, these formulas could only maintain
their convenient simplicity at the expense of accuracy by leaving out uncomfortable
elements for the calculation. For this reason, they are only correct if the data series
contain very large numbers. They require at least hundreds and often many thousands
of individual observations. Mathematicians can easily say that if physicians want to
draw safe conclusions, we must always work with large numbers; we must compile
thousands or hundreds of thousands of observations. — After all, this is usually not
practicable with therapeutic statistics. If the question is which method of treatment for
pneumonia deserves to be preferred, or which method of surgery for a surgical disease
is better, — how can a physician treat a few thousand cases one by one and then a
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few thousand by another method? And if one wanted to help oneself by compiling
the results of different observers, obtained at different times and places, then perhaps
one would get those thousands. But then the compared groups would no longer be
identical, and all conclusions would be illusory. Only in rare cases can therapeutic
statistics meet the conditions that mathematicians have demanded so far. But if they
are fulfilled, — then it can often seem questionable whether probability calculus is still
urgently needed. If, for example, one wants to compare the success of the antipyretic
treatment of abdominal typhoid fever with that of the expectant treatment, if one
sees that, without exception, wherever the antipyretic method has been applied in a
reasonably appropriate manner, mortality has been reduced to a fraction of the earlier
mortality, if for individual hospitals the cases to be compared already count in the
thousands, — who will still consider probability calculus necessary to come to the
conclusion that the antipyretic treatment is the better one? — Especially in cases,
in which the mere consideration of the numbers is not sufficient to gain a certain
conviction, in which therefore only by calculation it could be recognized, whether there
is a certain degree of probability for the meaning of a difference and which degree
of this probability exists, the formulas fail. And even with very large numbers, if the
differences are small and therefore at first glance doubtful in their significance, those
theorems can sometimes become disturbingly inaccurate.

The mathematicians” demand to always use large numbers for their conclusions has
usually been accepted by the representatives of medical statistics without opposition.
The same ones are ready to inculcate in physicians at every opportunity as an unshak-
able dogma that series of observations which do not consist of very large numbers
cannot prove anything at all, that it is unscientific to want to draw conclusions from
small numbers. — But is such an assumption really founded in the nature of things?
If someone had treated only 12 cases of malaria expectantly and 12 other cases with
quinine, would that not be enough to convince, that quinine is useful against malaria,
even without any calculation? If the computation does not know what to do with such
an unambiguous result, it is only a deficiency of it and a proof that the mathematical
methods are still highly imperfect. In fact, the requirement of large numbers has only
had some justification so far, when mathematicians have not yet provided us with a
method that allows us to apply probability calculus to less large numbers. However,
an exact and comprehensive solution to the problem must be equally applicable to
small and large numbers. Of course, it will always result that for small numbers there
must be a significant difference in the results of the observations in order to achieve
a certain degree of probability, whereas for large series of observations for the same
degree of probability even a small difference in the results is sufficient. But there are
circumstances in which even the comparison of observation series consisting of small
numbers results in a probability for the exclusion of chance that comes very close to
certainty.

Poisson’s formulas have so far been the only method applied to therapeutic statistics.
And in their application, physicians have not always been satisfied!. At first it was

1A good basic guide to using them can be found in: Fick, Medicinische Physik. 2nd edition. Brunswick
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exploited by Gavarret?, and later all physicians who dealt with medical statistics
used the same formulas, namely Schweig3, A. Fick, Oesterlen? Jessen®,
Hirschber g6. Gavarret, as Poisson had done with individual special tasks, takes
a probability of 0,9953 or 21, i. e. a probability that corresponds to a bet of 212 to 1,
as sufficient, and the formulas are set up to indicate whether a therapeutic-statistical
result with a probability of 312 or odds of 212 to 1 is to be regarded as non-random,
or whether this degree of probability is not reached. He has also calculated a table
indicating the limits for which it can be claimed with the stated degree of probability
that it will not be exceeded by the random deviations of statistical results. This table is
also shared in more or less modified form by Fick, Jessen, Hirschberg.

It cannot be disputed that these tables may have a certain usefulness. But both the
tables and Poisson’s formulas, in the form in which they have been recommended
so far for medical statistics, are far from being sufficient for the needs of the medical
observer.

First of all, it is a deficiency that it can only be seen from this whether the assumed
degree of probability of 212 to 1 is reached or not. But what if this degree of probability
is not reached? Should all series of observations in which the odds of excluding chance
are not quite 212 to 1 be completely worthless? Would it not already be a remarkable
result if we had the odds of 100 to 1 that a certain observation series gave better
results than another? And would we not even then, if the odds of preference of one
observation series would only be 10 to 1, according to the experience available so far,
apply this one rather than the other for the next case? Truly, we are not so rich in gold
coins in the empirical foundations of therapy that we could be advised to throw all
silver coins into the water! And a handful of silver coins is often worth more than a
single gold coin. In fact, if the probability calculus is to be applied to the assessment
of therapeutic results with benefit and in an extensive way, then it is necessary: not
that one can convince oneself by means of a table or formula that for the exclusion of
chance a certain arbitrarily assumed degree of probability is reached or not reached; but
rather that one can calculate with certainty and accuracy for each available observation
material with which degree of probability chance is excluded. Only when this is
possible can we use all our series of observations in a scientific way, by giving each of

them exactly the value it deserves’.

1866. Appendix.

2J. Gavarret, Allgemeine Grundsdtze der medicinischen Statistik. Translated by Landmann.
Erlangen 1844. — In this translation, certain formulas are distorted beyond recognition.

3 Auseinandersetzung der statistischen Methode. Archive for physiological medicine. XIII. 1854. P. 305.

“Handbuch der medicinischen Statistik. Tiibingen 1865. P. 60.

5Zur analytischen Statistik. Journal of Biology. III. 1867. P. 128.

®Die mathematischen Grundlagen der medizinischen Statistik. Leipzig 1874.

7In the correct recognition that adhering to the requirement of a probability of 212 to 1, even in cases
where it cannot actually be achieved, does not meet the factual needs of medicine, Hirschberg
calculated a second table in which only a probability of 0,916 or about 11 to 1 is required. This is
a major improvement in that some observation series become at least to some extent usable, which
they were not before. But the other deficiencies are also fully inherent in this table, and the natural
requirement to determine the degree of probability for any observation material at hand is met neither.
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Furthermore, it is very unfavourable for practical use that these tables usually start
with the number 300, exceptionally with 200. Observation series which do not cover at
least as many cases can therefore not be considered at all®. Apparently, this excludes
most of the observation series occurring in practice from the application of probability
calculus.

Finally, however, these tables cannot be applied directly to the problem at hand. And
if this did happen at times, it did not correspond to the real meaning of Poisson’s
formulas, and the results had to be incorrect. It happens that in case of a result the
conditions of the table, as they are usually understood, are also not nearly fulfilled, i.e.
the odds of excluding chance do not seem to reach 212 to 1, while in reality the odds
are more than 1000 to 1.

These shortcomings of the methods have contributed significantly to making the
results of therapeutic statistics appear even less certain than they actually are, and
in general to discrediting therapeutic statistics more than they deserve. And if the
physicians have not yet been able to decide to apply the methods presented by the rep-
resentatives of medical statistics to their observations and to regulate their conclusions
from them, this was probably less based on a misunderstanding of the high value of
probability calculus or on an unscientific indifference towards strict methods, if they
often believed that it was enough to have taken every care to carry out an accurate
clinical analysis, if they did not just neglect mathematical analysis, but sometimes even
declared to be superfluous or deceptive, it was certainly partly the opposition of the
simple mind against too far-reaching assertions and demands.

A firm foundation of therapy is unthinkable without therapeutic statistics. Even
where the therapy would be a so-called rational one, it could not do without the
sample provided by experience, by the statistics of success. However, if therapeutic
statistics are to stand on solid ground, it is necessary to apply probability calculus in
its strictest form. It is therefore an urgent need for methods to be found which allow
the significance of therapeutic experiences to be assessed with higher certainty than
has been possible up to now.

For some time now, on the occasion of special therapeutic investigations, I have
had the possibility to directly examine the task of applying probability calculus to
therapeutic statistics. The fundamental formulas have resulted in a relatively simple
form, without the necessity of neglecting uncomfortable links or the assumption of
assumptions that are only approximate or only valid for large numbers. The formulas
are therefore just as valid for small numbers as for large ones. I have also succeeded
in deriving other formulas from the fundamental ones, which hardly require any
mathematical knowledge for their practical application, but which are suitable for
solving the everyday questions of therapeutic statistics with any degree of accuracy
desired. While the application of these formulas is also without difficulty for non-
mathematicians, the complete derivation of them in a simple and understandable way

8Even Hirschber g’s second table, which only demands odds of 11 to 1, starts with the number 300.
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can only be given by partially applying higher analysis. In the following I have moved
everything that requires special mathematical knowledge to supplemental notes. The
essential discussions contained in the actual text will be understandable for everyone
who is familiar with the initial principles of mathematics and probability. For orientation
on the elementary theorems of probability, the work of Hirschberg is recommended
for the physician, despite individual misunderstandings that occur during application,
as well as the older work of Lacroix”, which is still the best elementary representation
of probability. Finally, the basic features of probability are excellently represented in
the works of Hagen!?, which also contains a highly recommended explanation of
the method of least squares. The actual fundamental works of Laplace, Gauss,
Poisson, to which everyone who wants to work independently in this field will refer,
are only accessible to those who are familiar with higher analysis. — Those who do
not want to get involved in mathematical discussions can simply skim over them and
use the formulas I. and II. on page 946, the application of which can be derived from
the examples.

Let us assume that two different types of treatment have been used for a given
disease; the first type of treatment has resulted in a deaths and b recoveries, the second
type of treatment in p deaths and g recoveries. In the second series of observations, the
mortality ratio was more favourable: ﬁ was less than ;. Before we can investigate
what was the cause of the favourable mortality ratio in the second series of cases,
the question whether this more favourable ratio has any significance at all has to
be answered, or whether it is perhaps simply due to chance. This question can be
explained in an exact way by probability calculus. More specifically by indicating how
large the probability is that the constant conditions were actually more favourable in
the second series of observations, and how large the inverse probability is that the
constant conditions were not more favourable. The comparison of these two quantities
is then crucial for our verdict.

We can bring these and the numerous analogous tasks of therapeutic statistics to a
pattern that corresponds to what has long been used in probability calculus.

Let us imagine two urns, each containing a very large number of partly black and
partly white balls in any unknown ratio. We first draw individual balls from the first
urn (which we throw back into it each time and mix with the others). In total we have
drawn a black and b white balls. Then we draw from the second urn as well and get
p black and g white balls. It would again be ﬁ smaller than ;%;. Now the question
arises: Is the relatively smaller number of black balls received in the second case due to
the fact that the second urn contained relatively fewer black balls? Or is it based on
coincidence? Or more precisely: after the results of the two drawings, how large is the
probability that the ratio of black balls to the total number of balls in the second urn
is smaller than in the first? And what is the inverse probability that the ratio of black
balls to the total number of balls in the second urn is equal to or greater than that of

95. F. Lacroix, Traité élémentaire du calcul des probabilités. 4th edition. Paris 1864.
G, Ha gen, Grundziige der Wahrscheinlichkeits-Rechnung. 2nd edition. Berlin 1867.
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the first?

Itis certain that the ratio of black balls in the second urn is either smaller or equal
or larger than in the first urn. If we set the certainty = 1 and use P to represent the
fraction which expresses the probability that the ratio of black balls in the second urn
is smaller, then 1 — P is the probability that this ratio is equal or greater in the second
urn than in the first.

It is now a matter of combining all equally possible cases which correspond to the
probability P, on the one hand, and all equally possible cases which correspond to the
probability 1 — P, on the other.

Let in each of the two urns be very many, possibly an infinite number of balls. In the
tirst urn, there are among n balls s black and n — s white balls. Then, the probability to
hit a black ball on the first draw is = & and the probability to hit a white ball on the

S

first draw is = . The probability to draw only black balls in a draws is = (£)°, the
probability to draw only white balls in b draws is = (£2) * The probability to draw

first a black balls in a row and then b white balls in a row is (%)a . (%)b And the

probability to draw in a 4 b draws in total a black and b white balls but in any order is

_ (@bt rsya <n—s>b
©ald! ( n ) n
Here, a! designates the so-called factorial of 4, namely the product 1-2-3-...-a.
Likewise, itis (a+0b)! =1-2-3-...-(a+b).
In the second urn, let the number of black balls among n balls be equal to ¢t. Then
the probability to draw from the first urn in a + b draws in total a black and b white

balls in any order, and to draw afterwards from the second urn p black and g white
balls in p 4 g draws in any order is

s Gy (2 () (5
~ alblplg! n n n n

The sizes s and t are unknown. As far as their behaviour towards each other is
concerned, two possibilities come into consideration for us, which we have to compare
according to their probability. These are the following two hypotheses:

First hypothesis: t is smaller than s. This hypothesis corresponds to the probab-
ility P that relatively fewer black balls are found in the second urn.

Second hypothesis: tis equal to or greater than s. This hypothesis corresponds
to the complementary probability 1 — P.

If none of a, b, p, q equals zero, the value of both s and t must be between 1 and
n — 1, and for both s and t any value between these limits would be possible. We now
make the assumption that, before the drawings began, there was no reason to consider
any particular ratio of the black balls more probable than any other ratio, i. e. that a
priori the assumption s = 1 or s = 2 had the same probability as s = m or s = m + 1 or
s =n—2ors=n—1. The same applies to t. If, as may happen in special cases, this
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condition were not fulfilled, the a priori difference in the probability of the individual Page 945
ratios would have to be taken into account (Supplemental Note 1).

Both for s and t, we now have to insert all numbers between 1 and n — 1 and, for
each of these possibilities, we have to examine the probability of the observed success
both for the first and second hypothesis. If, for example, s = m, then for the first
hypothesis all values of t which are smaller than m would be possible, and for the
second hypothesis all values of ¢+ which are equal to or greater than m. We use the

abbreviation
(a+b)!(p+9q)!
alb! p! g notbtr+q

=0
For s = m, the probability of the observed success in the first hypothesis is

=Q-m'(n—m)’ {(m—1)Pn—m+1)1+ (m—2)P(n—m+2)7+...
+17(n —1)7},

and in the second hypothesis

=Q -m'(n—m)" {mP(n—m)"+ (m~+1)P(n—m—1)
+(m+2)P(n—m—=2)T+...4+ (n—1)P17}

Using the common sigma notation, the sums in brackets can be written as

t=m—1 t=n—1

Y, tP(n—1t)7 and Y P (n—t)

t=1 t=m

Next, we insert for s all numbers from 1 to n — 1 one by one and determine the
probability of the observed success for each of the two hypotheses. Since we are initially
concerned only with relative probability, we can omit the factor Q which all expressions
have in common. We then obtain the following values for the relative probability of the
observed success:

for the first hypothesis for the second hypothesis
n—1
fors=1 1°-(n—1)*-0"-n7=0 19 (n—1)0- ¥ tP(n—t)7
1
n—1
fors=2 2¢-(n—2)0-17.(n—1)1 2. (n—=2). ¥ tP(n—t)1
=2
2 b
fors=3 3% (n—3)0- YtV (n—1t) 37 (n—=3)0. ¥ tP(n—t)1
= =3
' ri—l tn—l
fors=m m'-(n—m)’- ¥tV (n—1t) me-(n—m)l- Y tP(n—t)
t=1 t=m
Page 946
for all n—1 s—1 n—1 n—1
s7-(n—s)b. tf’~n—t‘7} {s“-n—sb- tpn—t‘?}
values Sgl { ( ) El ( ) Sgl ( ) ES ( )

together

The probability of the first hypothesis is related to the probability of the second, just



as the probability of the observed success under the first hypothesis is related to the
probability of the observed success under the second. Since we denote the probability
of the first hypothesis by P and that of the second by 1 — P, we have:

n—1s—1
Y ¥ st (n—s)-tP(n—t)T
A) ) R |
( 1—P n-1n-1 ’
Y L st(n—s)b-tP(n—t)T

s=1 t=s

Similarly, we obtain by inserting the various possible values for t the following
expression, which must necessarily be the same as the previous one.

T Y a1 st
(B) P t=1s=th1
1—-p n—1 ¢t :
¥ P (n— 115t —s)’
t=1s=1

With the achievement of this result, the task we had set ourselves has been solved.

All that remains is to use purely mathematical manipulations to transform the obtained

expressions in such a way that they become as convenient as possible for the calculation.

Such transformations yield a large number of different formulas, which all give exactly
the same results in the calculation, but some of which are more and others less difficult
to calculate (Supplemental Note 2). I give here the two formulas which are the most
convenient of all, and which we will therefore use exclusively.

(a+b+D!(p+g+D!(a+p+1)!(b+g+1)!

L P= A b+ (p+1)gl(a+b+p+qg+2)
a-q a(a—1)-q(qg—1)
s {” b+2) (p+2) 0+ (b+3) (P2 (p+3)
a(a—1)(a—-2)-q(q—1)(q—-2)
(6+2) (6+3)(b+4)-(p+2) (p+3) (p+4) +++}
I 1-Pp— (11—|—b—|—1) (p+q+1)'(a+p+1)!(b+q+1)!

(a+Dop!(g+1)!(a+b+p+g+2)!
bep bb-1)p(p-1)
><{”<a+z>~<q+2> (@+2) (@t3) (7+2) (@ +3)
bb-1)(b-2)-p(p—1) (p—2)
@12 (@13) @+4) @12 (q+3) (9

+

+++}

Only one of these formulas needs to be applied at a time, by calculating either P from
formula I. or 1 — P from formula II.. Usually, the latter method will be more convenient.
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The notation must always be chosen such that ﬁ is smaller than
pEn g

In the derivation of the formulas, we have not made the otherwise common as-
sumption that the number of observations is very large!!. Therefore — and this is the
essential advantage of these formulas — their validity does not depend on the number
of available observations. The results are almost as accurate when the numbers are
small as when they are large like thousands or millions. The degree of accuracy in a
particular case depends on how far one wants to perform the calculation.

To show the application of the formulas, we start with an example consisting
of very small numbers.

1. From an urn, about which we only know that it contains numerous black or white
balls, 3 balls were drawn, 2 of which are black and 1 is white. From a second urn, 4
balls were drawn, of which 1 was black and 3 were white. The question is: after this
drawing, how large is the probability P for the assumption that the second urn contains
comparatively fewer black balls than the first? We havea =2,b=1,p =1,4 = 3, and
obtain according to formula II.:

4!5!4!5! 1-1
=P =i {1 * 5.4}
The series in brackets consists only of 2 terms because for all following terms, the
nominator of the fraction becomes = 0. By 4! we denote the factorial of 4, that is the
product 1-2 -3 - 4; likewise 5! stands for 1-2-3-4-5; 1! = 1; etc. The numbers are so

small that the calculation can be carried out without any further auxiliary means. It
yields

1-P = 0,1666666...,
hence P = 0,8333333..., —— =5.

From formula I., one obtains in the same way:

_ 4151415! 2-3+2-1><3-2
~ 2121213191 3.3 3-4x3-4

P =0,8333333....

You can therefore bet 5 to 1 that the ratio of black balls in the second urn is lower than
in the first. If among similar cases of illness in one treatment 2 of 3 patients would have
died and in another treatment only 1 of 4 patients, you could already bet 5 to 1 that
this was not a coincidence, but that the conditions were more favourable in the second

HThe number 1 is of course assumed to be very large or infinite; but this exactly corresponds to reality.
Since this n corresponds to the number of observations which could possibly be made in the future; it
is completely independent of the number of observations actually made.

10
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series of cases. This result corresponds completely to the unbiased consideration, which
would also find a request in the result of the second series compared to that of the first,
to continue with the second treatment method until further notice.

In the chosen example, despite the small number of observations, the probability
obtained is not entirely insignificant, because the difference 2/3 —1/4 is a very large
one. If this difference were smaller, say 2/3 — 2/4, by assuming that there were 2 black
balls in the first draw among 3 balls and 2 black balls in the second among 4 balls, then
by settinga =2,b=1,p=2,q=2weobtainl—-—P =5/14 and P = 9/14. So we
could not even bet 2 to 1 that there would be relatively fewer black balls in the second
urn.

As soon as the numbers are slightly larger, the direct calculation of the factorials a!,
b! etc. is no longer possible. The factorial of 100, for example, is already a number
of 158 digits, which begins with the digits 93326 . ... Such numbers, if you wanted to
use them directly, would be difficult to handle for the calculation. But in probability
calculus we usually do not need these factorials themselves, but only their ratio; and
this is obtained exactly from the difference of their logarithms. In the table at the end of
this paper!?, for all numbers from 0 to 1200 the logarithms of their factorials [Editor’s
note: to the base 10] are listed, and by means of this table the calculation of the factor
consisting of factorials can be carried out with the highest convenience, as long as the
values for a + b + p + q + 2 do not exceed 1200. Let us take a fictitious example again.

2. Suppose for some treatment of 15 ill patients, 6 have died while for another treatment
of 32 equally ill patients, 7 have died. How large is the probability that the more
favourable mortality ratio in the second case is not accidental?

I give, in order to show the arrangement of the calculation in detail, the calculation of the

example in full detail. We have a = 6,b =9, p =7, g = 25, and obtain according to formula II.:
1 ~ 16!33!14!35! 7><9Jr 7-6x9-8 n 7-6:5x9-8-7 T
719171261 49! 27x8  27-28x8-9 27-28-29x8-9-10

First we calculate with the help of the tables at the end of the issue the factor consisting of
faculties, which we denote by F. [Editor’s note: Throughout the article the symbol “log” denotes
the logarithm to the base 10.]

log(16!) = 13,32062 log( 7!) = 3,70243

log(33!) = 36,93869 log(9!) = 5,55976

log(14!) = 10,94041 log( 7 = 3,70243

log(35!) = 40,01423 log(26!) = 26,60562

log (49! 2,7841
log numerator = 101,21395 0g(49") 62,78410
—log denominator = 102,35434 log denominator = 102,35434
logF = 0,85961 — 2

12The table is an excerpt from the larger table of C. F. Degen, calculated to 18 decimal places, Tabularum
ad faciliorem et breviorem probabilitatis computationem utilium Enneas. Havniae 1824.
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The calculation of the other factor consisting of a finite series is easiest to perform with
ordinary logarithms [Editor’s note: to the base 10], taking into account that every new term can
be obtained from the preceding one by multiplication with additional factors. We denote the
separate terms of the series by 1, o, 1, y2 and the sum of the series by S, so that

The calculation can for instance be done as follows:

log7 0, 84510
log9 0,95424
1,79934
2,33445
log yo 0,45489 — 1
log 6 0,77815
log 8 0,90309
1,14613
2,40140
log y1 0,74473 —2
log 5 0, 69897
log7 0, 84510
0,28880
2,46240
log v 0,82640 — 3
log 4 0,6021
log 6 0,7782
0,2067 —1
2,5185
log ys 0,6882 —4
log 3 0,477
log 5 0,699
0,864 —3
2,570
log y4 0,294 -5

S=1+yo+y1+y2+y3+++ and 1-P=FxS.

log 27 1,43136
log 8 0,90309
2,33445
log 28 1,44716
log 9 0,95424
2,40140
log 29 1,46240
log 10 1,00000
2,46240
log 30 1,4771
log 11 1,0414
2,5185
log 31 1,491
log 12 1,079
2,570

If one requires the value of P only up to 5 decimal places, one can stop the series here
[Editor’s note: after six terms]. If one, as usually sufficient in practice, is prepared to accept a
lower degree of accuracy, then one could have stopped the calculation already earlier and could
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have taken even less decimal places for the logarithms. If one is familiar with the calculation
with complements, then the form can be even further simplified. The combination of the terms
of the series yields:

1,00000
logyo = 0,46489 —1 yo = 0,29167
logy; = 0,74473 -2 y1 = 0,05556
logy, = 0,82640—3 y2 = 0,00671
logys = 0,6882 —4 y3 = 0,00049
logys = 0,294 -5 ya = 0,00002
S = 1,35445
logS = 0,13176
log F = 0,85961—2
log(1—P) = 0,99137 -2
1-P = 0,09803
P = 0,90197
P
- 2
1-P %

The calculation of P according to formula I., which is almost as easy to perform in this example,
gives exactly the same result.

One can therefore bet a little more than 9 to 1 that the difference in the results for
both series of observations was not accidental, i.e. that if all other constant causes from
which the difference could be derived can be excluded, the same can be applied to the
difference in treatment.

If the difference in the observation results had been larger, then despite the small
numbers, a much larger probability of excluding chance would have been obtained.
Assuming that in the same example only 2 of the 32 patients in the second series died,
this would result in P = 0,9968476, i. e. one could bet 316 to 1 that the difference in the
results was not due to chance.

3. In order to show how large the probability of excluding randomness can become
even with small numbers, if the differences in the results of the observations are very
large, we take an example mentioned earlier, for whose calculation the formulas used
up to now were completely inadequate. Of a certain number of patients suffering
from malaria, 12 had been treated with sufficient doses of quinine and 12 others had
been treated purely prospectively without any active treatment. By the third day of
treatment, 10 of those treated with quinine had become fever-free. Of those treated
prospectively, only 2 were free of fever. How big is the probability that the quinine as
an antipyretic method has any effect?

13



Weseta=10,b =2, p =2,q =10, and get P = 0,9993987. We can bet 1666 to 1 that
the difference in the results is not random.

4. In no. 1 of the “Berliner Klinische Wochenschrift” of that year (1876), Stricker
reported from the Traube Clinic on the effect of salicylic acid in acute rheumatoid
arthritis. He described that all fresh cases subjected to treatment with salicylic acid
were free of all fever and local symptoms within 48 hours at the latest, but usually
much earlier. Since we physicians are used to the fact that from time to time certain
medicaments against certain diseases are advertised as infallible, but mostly prove to be
ineffective or not very effective upon closer examination, it was not surprising that at
the beginning this communication met with a decided scepticism from some physicians,
especially since only 14 cases have been reported so far. The author himself says that
he unfortunately has to admit that his statistical material “is composed of only 14 cases,
for whom nothing is of value, who derives a decisive statistic only from thousands
of cases”. — In fact, this is the usual view in medical statistics. But the simple mind
will certainly agree with the author when he ascribes a very large evidential value to
the fact that all 14 cases without exception were so unusually favourable. — I applied
my formula to that statement and convinced myself by a very simple calculation that,
assuming the correctness of the observations and especially of the diagnoses as a
matter of course, those 14 cases are perfectly sufficient to prove the existence of an
unusual influence which only occurred in those cases and caused their favourable
course, and that with a degree of probability which does not differ substantially from
absolute certainty. — Also, the first tests which I myself carried out on sick people
showed surprisingly favourable results; and since then, as is well known, Stricker’s
statements have not been confirmed in the most essential points.

For the execution of the calculation it is necessary to be able to compare a number of
observations with indifferent treatment. It can happen, although rarely, that a single
case treated prospectively also takes such a favourable course. In order not to judge the
results of prospective treatment too unfavourably, we would like to assume that such a
favourable course of treatment occurs in an average of 20 percent of cases. If we were
to use 10 earlier cases for comparison purposes, of which 2 would have had the same
favourable course, we would have a = 8, b = 2, p = 0, g = 14, or also, which gives
exactly the same result, a = 14, b = 0, p = 2, 4 = 8. We obtain according to formula II.:

1 p— 11115191170 11117
~15!10!12!19126!  2126!

Since b resp. p = 0, the series is reduced to the first term = 1. Note that 0! = 1. The
calculation with help of the table results in:

log(11!) = 7,60116
log(17!) = 14,55107
22,15223
26, 90665

14
log(1—P) = 0,24558 —5
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log( 21) = 0,30103
log(26!) = 26,60562

26,90665

1-P = 0,000017603
P = 0,999982397

One could bet more than 56000 to 1 that the remarkably more favourable course of
those 14 cases was not accidental.

If 100 indifferently treated cases had been used for comparison, 20 of which would
have taken the short favourable course, one could bet more than 800 million to 1 that
the result in those 14 cases would not be the product of chance.

If 1000 cases were available for comparison, of which 200 would have taken the
favourable course, the odds would be more than 19000 million to 1.

If the difference of the observed results is less pronounced, then the probability of
excluding chance is also lower, even if the number of observations is considerably
larger.

5. In my ward at the Basle hospital, between 1867 and 1871, 38 of 230 patients with acute
croupous pneumonia who were treated with antipyretic methods as far as necessary,
died; the mortality rate was thus 16.5 percent. In earlier years, before the introduction
of antipyretic treatment, 175 of 692 patients had died in the same ward; the mortality
rate was 25.3 percent. Through precise clinical analysis it was established that the two
series of observations were comparable in every other regard (see Fismer, Deutsches
Archiv fiir klin. Med. volume XI. p. 391 ff.). So the only question left is: How large is
the probability that the difference in results was not accidental:

We have a = 175, b = 517, p = 38, g = 192. The calculation according to formula II.

gives 1 — P = 0,0028651, thus P = 0,9971349. The odds for excluding chance are 348 to
1.

6. Finally, we want to calculate an example which at the same time is suitable to show
in what striking way the meaning of the formulas used by representatives of medical
statistics has been misunderstood by them. In the presentation of the mathematical
principles of Hirschberg’s medical statistics, the following example is given to
explain the theorem that no weight should be placed on small fluctuations in statistical
ratios: “If in one series of 300 cases of a disease, e.g. ileotyphus, a mortality of 22 per
cent is found, and in a second series of 300 cases of ileotyphus a mortality of 16 per
cent is found, the true value of mortality may be the same in both series, indeed it
is highly probable”. Such an assertion does not at all correspond in fact to the usual
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view of the general practitioner, who will certainly declare the result of the second
series to be considerably more favourable; but it does not correspond to the result of
an unbiased consideration either. The latter will certainly admit that the difference in
the therapeutic results in the two series is not large enough to allow us to draw firm
conclusions from it, even if the numbers are not very large. The possibility that this
difference can only be accidental and meaningless will not be doubted; but that this
is probable will certainly not be obvious to the simple mind. Now, even Poisson’s
formulas, if applied correctly, give a probability of 0,9397 for the assumption that the
reduction in mortality in the second series is not random but is due to a constant cause;
i.e. one can bet more than 15 to 1 that this reduction is not random. The question,
of course, as to what is the cause of the reduction in mortality, whether a possible
difference in treatment or a change in the nature of the epidemic or any other change in
circumstances, is not a matter for mathematical analysis, but for clinical analysis. Odds
of 15 to 1 are still far from absolute certainty; not as large as one might wish if one is to
make difficult decisions, and especially not as large as the Gavarret formulas require;
but certainly not meaningless. It will depend to a large extent on other circumstances
and considerations whether one wishes to consider them sufficient to take an important
decision in relation to future treatment or anything similar. Let us assume, for example,
that the first series of observations were made in an ordinary hospital, the other under
exactly the same conditions in a barrack hospital. These observations would then be a
not inconsiderable hint. Where the construction of the barracks would be easy to carry
out, one would probably proceed without question to that result. Where, on the other
hand, there would be particular difficulties and inconveniences connected with it, and
there would be no urgent need for a careful decision, it would be preferable to wait
and see whether further observations would increase or decrease the probability. — In
all cases, we can be certain that the result of a correctly applied calculation will not
conflict with the result of a reasonable consideration carried out without an invoice.
The calculation gives a result expressed in numbers and is therefore, where it can be
applied, an irreplaceable aid. The importance and weight of these figures and the
decisions to be taken on the basis of them are again a matter of debate.

If we apply our more exact formulas to the example, then, by setting a = 66, b = 234,
p = 48, g = 252, we obtain P = 0,96915; we thus have for the exclusion of chance a
probability of more than 31 to 1, and the result therefore has in reality an even somewhat
larger significance than would be ascribed to it according to Poisson’s formulas, which
are not very exact for such small numbers.

If the factorials appearing in the formulas are larger than 1200! our table is no longer
sufficient for calculation. But especially for large numbers, the factorials can easily be
calculated according to Stirling’s formula, which, if « is a large number

« —&

al =a e 21t

In this case e is the basis of the natural logarithms and 7 is the circumference of the
circle for the diameter = 1. If all numbers are reasonably large, formula II. yields the
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following expression, which is convenient for calculations with logarithms:

(a+b+1)a+1 , (a+h+1)b . <p+q+1>P _ (;7+q+1 )‘7+1
a+1 b +1
M 1-P= —F A
atb+ptg 2\ TP Catbprgr2) P
a+p+1 b+q+1

+++}

« (a+b+1)~(p—|—q—|—1)-(a+p+1)-(b—|—q+1) {1 b-p
2w-(a+1)-b-p-(g+1)-(a+b+p+qg+2) (a+2)(g+2)

[Editor’s note: The last factor in formula III. is given with more terms in formula II.]

7. Example. In the years 1843 to 1864, 469 patients with abdominal typhoid died
in the Basle hospital during prospective treatment of 1718 patients with abdominal
typhoid. In the years 1866 to 1874, only 130 patients died during antipyretic treatment
of 1175 patients with the same average disease severity. What is the probability that the
favourable mortality ratio with antipyretic treatment is not due to chance? We have
a =469, b=1249, p = 130, g = 1045, and obtain with formula III.:

log(1—P) = 0,7310— 28
1—P = 0,000000000000000000000000000538. ..
P = 0,9999999999 99999 99999 99999 99462 . ..

So you can bet more than 1800 quadrillions to 1 that the difference in the results is not
random.

The larger the numbers are, the easier it is to use Poisson’s formulas for calculation.
However, since they do not directly address our problem, they need to be slightly
modified to be useful for our purposes. The results of the calculation are essentially the
same as those obtained according to our formulas, only they are necessarily somewhat
less accurate. For example, when applied to our typhoid fever statistics (7th example),
the probability is even slightly higher; in the pneumonia statistics (5th example), on the
other hand, the probability obtained is slightly lower than that calculated by us.

A few more hints about safeguards and auxiliary means should be mentioned, which
in some cases can make the calculation easier.

For tasks where it is necessary to calculate a slightly larger number of terms, it is
important to have a convenient control of the calculation to be sure of not making
spelling and calculation errors. You can now easily calculate any term of the series
directly and compare it with the value obtained by successive calculations. If we denote
the terms of the series in formula II. by

1,90, Y1,Y2,Y3---Yk-.-Yn, then
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_ b(b—1)...(b—k) xp(p—1)...(p—k)

K a+2)(a+3) .. (a+k+2) % (+2)(7+3)...(F+k+2)
B bipl(a+1)(g+1)!
k=D (p—k—1)!(a+k+2)!(g+k+2)!

The latter term can be easily calculated with the help of the table of factorials if the
individual numbers do not exceed 1200. If the result is correct with the result obtained
by successive calculation, it is very likely that the logarithms of all preceding terms are
also correctly calculated.

If the numbers are large and the differences of the observation results are small, it
can happen that for an accurate calculation of 1 — P very many terms of the series
would be necessary and therefore the calculation would be very time consuming. For
the case, which is not uncommon in practice, that one can already be satisfied with a
certain approximation, the sum of the series in formula II. can be easily estimated by
the following approximation formula, which only requires the calculation of two terms,
which then must be extended to at least 6 digits:

Yo+ Yo Yo — 21
Yo+yo-y1—2y1

Once the series has been accurately calculated, this approximation formula provides
some control over the calculation.

Finally, it should be mentioned that our formulas are not only applicable to thera-
peutic statistics, but also to a large number of other problems in probability calculus.

I+yp+n+yp+++=

Supplemental Notes.

1) When dealing with tasks concerning the so-called posterior probability, it is not
uncommon to be under the illusion that one is approaching the observations without
any preconditions. In reality, this is never the case and naturally cannot be the case.
But the nature of the a priori assumptions has a significant influence on the results.
Instead of the presupposition assumed in the text, which has usually been made tacitly
for similar tasks up to now, other assumptions could be made; for example, it could be
true for certain special cases if one were to presuppose that every single ball in the urn
could be as good as black or white; and then, a priori, the different ratios would have a
very extraordinarily different probability; they would behave like binomial coefficients.
2) From equations A and B on page 946 one obtains, for n = co with mathematical

rigour, the following four fundamental formulas, in which the abbreviation
(a+b+1)! and P+

1Dl =v plal = isused.
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(1) P = vop- | [x"TPHQ—x)"y" - (1—xy)ldxdy

() 1-P = v-u XU (T — x)"y7 - (1 — xy)Pdxdy
(3) P = v-pu- X TP (1 — x)Pyb - (1 — xy) dxdy
(4) 1-P = v-u- XL — )Ty (1 — xy)Pdxdy

o _ O\_ O\H o _
O O O O

The derivation of the formulas A and B given in the text is preferably intended for
the understanding of those not familiar with higher mathematics. I will shortly give a
derivation of the fundamental formulas in which the form corresponds more to that
used in such discussions.

From the first urn a black and b white balls were drawn, from the second p black
and g white balls, and pp 7 <a ++5- — What is the probability that for the second urn
the quotient of the number of black balls it contains by the total number is smaller than
for the first?

According to the results of the drawings from the first urn, there is a probability that
the quotient in question lies between the limits p and p’ for the first urn:

fO xa bdx a'b!

o bdx 'P
f (a+b+1) /x 1—xbdx
P

And likewise, it is for the second urn according to the result of the drawings from

the same.
As abbreviation, it will be used:

= PR et = f), (=07 = gl

1 1
Then v-/f(x)dx = y/q)(x)dx =1
0 0

If we apply the values of v - f(x) and y - ¢(x) as ordinates to the axis of x vertically,
the quotient of the black balls by the total number is smaller for the second urn than
for the first, if the true value of the first urn is closer to zero in the figure than the
corresponding value for the first urn. There is no other condition, and the true values
of these quotients may fall on any point of the abscissa. However, the individual places
have different probabilities according to the result of the drawings.
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We divide the abscissa from x = 0 to x = 1 into numerous equal parts, each of which
is = o.

k=1 K (k=1)5
(5) Then P = v-u- / f(x)dx - / ¢(x)dx
k=1 |,
(k—1)6 0
k=1 ké 1
(6) 1-P = v-u- / f(x)dx - / ¢(x)dx
=1 )5 (k—1)6

Two other formulas can be derived in a similar way by first performing the division
of the abscissa for y - ¢(x).

The smaller ¢ is taken, the more accurate the expressions are, and they become
accurate to any degree when é becomes infinitely small. In this latter case, except for
infinitely small second-order sizes

/f F(k0);

(k—1)5

is obtained by substitution of new variables:

y=1x=y
P:vy// x)dydx
y=0x=0

11
= v-u- //x”“’+1 byl (1 — xy)idxdy,
00

i.e. formula (1), and in analogous manner the three other fundamental formulas.
Even in several other ways, the same formulas can be derived with the help of
relevant considerations.
It can be seen from formulas (1) to (4), and can also be shown directly, that the value Page 958
of the formula is not changed if a is swapped with g and b with p; further, that from
each formula for P a formula for 1 — P and vice versa can be derived; by

either interchanging a with b and p with g,
or interchanging a with p and b with g.

Thus, with one of these formulas the other three formulas are given at the same time;
and since this also applies to all formulas still to be derived (of which sometimes two
become identical), I will, for the sake of simplicity, always give only one of the four
formulas belonging together.

The integration of equations (1) to (4) is only possible by developing the factor
consisting of a power of (1 — xy), possibly with some transformation, into a series. In
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this way many different formulas are obtained, of which I will mention only a few. One
obtains for example

7) 1-P=

(a+b+1D!(p+g+1)) {1 (a+1)(g+1)
(a+b+q+2)'b! 1-(a+b+g+3)

(a+1)(a+2)-(g+1)(g+2)
1-2-(atb+q+3)(atbtqgrd)
(a+1)(a+2)...(a+p)x(g+1)(g+2)...(9+p) }
1-2.3...px(atb+q+3)(atb+qg+4)...(at+tbtqgt+p+2)

Lot

This series is the beginning of a hypergeometric series but is broken off after p +1
terms. The complete series in combination with the factor consisting of factorials would
be = 1. Therefore, the rest of the series gives a value for P.

(a+b+1)!(p+q+1)!(a+p+1)!(b+q+1)!)X
alb!(p+1)g!(a+b+p+g+3)!
(a+p+2)(p+q+2)
8 {1+ (p+2)(a+b+p+q+4)
(a+p+2)(a+p+3)-(p+q+2)(p+q+3) Yy
(p+2)(p+3)a+b+p+qg+4)(a+b+p+q+5) ininfin.

@ P=

Using a transformation given by Kummer (Crelle’s Journal, volume 15, p. 172), one
obtains from formula (8) the formulas I. and II. on page 946, which are particularly

convenient for practical use.
The following formulas, which can be obtained from the same double integral, are
also quite useful for calculation, although somewhat less convenient:

(a+b+D!(b+g+Dl(a+p)(p+9q)!)

pla+b+p+q+2)
X{1+ (a+p)(p+4q)
p(p—1)-(a+b+p+qg+2)(a+b+p+q+1) }
+ G+p)atp-Dp+q)(ptqg—1) +++
(10) |_po latb+DI(p+qg+Dt(atp)t(b+q))

alb!pl(g+1)!(a+b+p+q+2)!
p(b+q+2)
X{”<a+p><q+2>
p(p—1)-(b+g+2)(b+q+3)
(a+p)a+p—1)(q+2)(qg+3)

+++}

Less useful are the series where the signs of the terms change.
Each of the formulas can be transformed into any of the others, even without going
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back to the original integral. When applied to numerical examples, the different
formulas produce exactly the same results, which is obvious.

I also note that I presented my formulas to the professor of physics Mr. Hagenbach-
Bischoff and the professor of mathematics Mr. Kinkelin in Basle, and that they
confirmed the correctness of these formulas by arriving at identical results, partly by
other methods.

Logarithms of the Factorials.
[Editor’s note: Four pages of tables omitted. The tables give for all« = 0,1, 2,...,1200

the logarithm to base 10 of the factorial a! to 5 (for @ < 450) respectively 4 (for a > 450)
decimal places.]
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