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Abstract
Background—Intention-to-treat analysis requires all randomised individuals to be included in
the analysis in the groups to which they were randomised. However, there is confusion about how
intention-to-treat analysis should be performed in the presence of missing outcome data.

Purpose—To explain, justify and illustrate an intention-to-treat analysis strategy for randomised
trials with incomplete outcome data.

Methods—We consider several methods of analysis and compare their underlying assumptions,
plausibility, and numbers of individuals included. We illustrate the intention-to-treat analysis
strategy using data from the UK700 trial in the management of severe mental illness.

Results—Depending on the assumptions made about the missing data, some methods of analysis
that include all randomised individuals may be less valid than methods that do not include all
randomised individuals. Further, some methods of analysis that include all randomised individuals
are essentially equivalent to methods that do not include all randomised individuals.

Limitations—This work assumes that the aim of analysis is to obtain an accurate estimate of the
difference in outcome between randomised groups, not to obtain a conservative estimate with bias
against the experimental intervention.

Conclusions—Clinical trials should employ an intention-to-treat analysis strategy, comprising a
design that attempts to follow up all randomised individuals, a main analysis that is valid under a
stated plausible assumption about the missing data, and sensitivity analyses which include all
randomised individuals in order to explore the impact of departures from the assumption
underlying the main analysis. Following this strategy recognises the extra uncertainty arising from
missing outcomes and increases the incentive for researchers to minimise the extent of missing
data.
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1 Introduction
Intention-to-treat (ITT) analysis is essential in avoiding bias in the analysis of randomised
trials [1]. The ITT principle states that all individuals randomised in a clinical trial should be
included in the analysis, in the groups to which they were randomised, regardless of any
departures from randomised treatment. By following this principle, data analysts preserve
the benefit of randomisation in creating treatment groups that do not differ systematically on
any factors except those assigned in the trial, whereas not following the ITT principle risks
introducing selection bias.

One implication of the ITT principle is that investigators should aim to collect outcome data
on all randomised individuals. It is essential to maximise the extent of outcome data
collected by careful trial design, including appropriate eligibility criteria, attention to the
burden of data collection on participants, and by energetic measures to remain in contact
with participants and regain contact with lost participants. Further information is given by
[2–4].

Despite investigators' best efforts, missing outcome data are common. From a statistical
perspective, any analysis of a clinical trial with incomplete outcome data makes untestable
assumptions. For example, it is often assumed that the data are missing at random (MAR),
which means that missing data are equal in distribution to observed data, conditional on
other variables included in the analysis [5]. Some analyses may make the stronger
assumption that the data are missing completely at random (MCAR), which means that
missing data are unconditionally equal in distribution to observed data. It is essential that the
assumptions made are transparent and plausible, based on knowledge of the trial and the
subject matter area.

A recent report by the Committee on National Statistics (CNSTAT) for the US National
Academy of Sciences clarifies many of the design and analysis issues [4]. In particular, it
stresses the importance of careful pre-specification of the causal estimands of primary
interest (Recommendation 1); choosing designs that minimise treatment withdrawal
(Recommendation 2); pre-specification of statistical methods and their assumptions in a way
that can be understood by clinicians (Recommendation 9); and collecting ancillary data that
are associated with reasons for missing values, and/or intensively following up a sample of
non-respondents (Recommendation 15). It describes analysis methods for trials with
incomplete data, focusing on methods that assume MAR (chapter 4). It then argues
forcefully for analyses that explore the sensitivity of the results to departures from MAR
(Recommendation 16), and extensively describes how such sensitivity analyses could be
performed (chapter 5), although methodology for sensitivity analysis is noted as requiring
more statistical research (Recommendation 20).

However, there is confusion about how the ITT principle should be applied in the presence
of missing outcome data. A strict view would hold that no analysis with missing outcome
data can be described as ITT, but such an unattainable standard is unhelpful. The
explanatory paper to the 2001 revision of the CONSORT statement suggested acceptance of
an analysis of observed data: “Although those participants [who drop out] cannot be
included in the analysis, it is customary still to refer to analysis of all available participants
as an intention-to-treat analysis” [6]. On the other hand, Hollis and Campbell argued that
“Complete case analysis, which was the approach used in most trials, violates the principle
of intention to treat” [7]. Often, ITT is taken to require imputation: the European Medicines
Agency wrote “The statistical analysis of a clinical trial generally requires the imputation of
values to those data that have not been recorded…” [8], and Altman wrote “No analysis
option is ideal here; there is, in effect, a choice between omitting participants without final
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outcome data or estimating (imputing) the missing outcome data” [9]. In new advice, the
European Medicines Agency takes a more relaxed view: “Full set analysis generally requires
the imputation of values or modelling for the unrecorded data” [10], and the 2010
CONSORT checklist no longer includes the “widely misused” phrase “intention to treat
analysis” [11], and instead separately asks whether the analysis was by original assigned
groups and what numbers were included in the analyses.

To resolve this confusion, we recently proposed a four-point ITT analysis strategy for trials
with incomplete outcome data [12]:

1. Attempt to follow up all randomised individuals, even if they withdraw from
allocated treatment.

2. Perform a main analysis that is valid under a plausible assumption about the
missing data and uses all observed data

3. Perform sensitivity analyses to explore the impact of departures from the
assumption made in the main analysis.

4. Account for all randomised individuals, at least in the sensitivity analyses.

The aim of this paper is to detail the rationale underpinning this strategy and to illustrate its
application. We assume that interest lies in testing and estimating the effect of treatment
assignment on clinical outcomes over all randomised individuals: this is the ‘ITT estimand’
or the ‘ITT treatment effect’ and is usually the most clinically- and policy-relevant estimand
in large-scale randomised trials. We do not consider: other possible estimands discussed in
the CNSTAT report, relating to subsets who adhere to treatment; estimating the causal effect
of treatment itself, although this may be a useful ancillary analysis [13]; or estimating the
effect of treatment assignment on a composite outcome that includes missingness as one
component (common in HIV trials aimed at comparing HIV RNA levels for antiretroviral
drugs, where missing values are taken as failures [14], but difficult to interpret clinically).

Throughout the paper, we consider an outcome either measured at just one time point, or
measured repeatedly where interest lies mainly in the treatment effect at the last time. Our
arguments would apply equally when interest lies in an average outcome such as the area
under the curve. We mainly discuss quantitative outcomes, and consider other outcome
types in the discussion. Our focus is on missing values in the outcome, although in our
example we also deal with missing values of baseline variables.

The paper is organised as follows. In Section 2, we describe various commonly used
methods of analysis, and their underlying assumptions. Section 3 details the rationale
underpinning the four points of the ITT analysis strategy. Section 4 shows why the ITT
analysis strategy does not require all randomised individuals to be included in the main
analysis. Section 5 uses the UK700 trial in mental health to exemplify the ITT analysis
strategy, and then to illustrate the argument in Section 4. We conclude with a discussion in
Section 6.

2 Methods and assumptions
In this section, we discuss various methods of analysis, noting whether they include all
randomised individuals and elucidating their underlying assumptions.

2.1 Last observation carried forward
Last observation carried forward (LOCF) replaces missing final outcomes by the last
observed outcome (which could be the baseline value of the outcome). While it is widely

White et al. Page 3

Clin Trials. Author manuscript; available in PMC 2013 February 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



used [15], and attractive because it usually allows all individuals to be included in the
analysis, it has been widely criticised [16– 21].

The assumption underlying LOCF is often mis-stated. When the analysis is an unadjusted
comparison of means or proportions, LOCF is unbiased if, in each randomised group, the
mean of the unobserved values of the final outcome equals (in expectation) the mean of the
last observed outcomes in the individuals who drop out. We call this the LOCF assumption.
When the analysis is covariate-adjusted, the LOCF assumption is conditional on covariates.
LOCF does not require the data to be MCAR, although some authors claim that it does [17,
18]: MCAR would instead require the missing data to be equal to the observed data in
expectation at the final time point [5].

If the LOCF assumption is false, bias in LOCF analyses can arise in various ways. If there is
a treatment effect at intermediate times but not at the final time, then carrying forward
intermediate values can artifactually create a treatment effect at the final time. If unobserved
outcomes improve over time, then LOCF tends to favour treatment groups with less drop-
out, while if unobserved outcomes deteriorate over time, then LOCF tends to favour
treatment groups with more drop-out.

LOCF validly estimates weighted averages of subgroup-specific means at different time
points [22], but the weights may differ between randomised groups, so this parameter lacks
clinical interest and causal interpretation [19]. LOCF is also sometimes defended as being
conservative: for conditions that tend to improve over time, it is indeed likely to be
conservative for arm-specific mean outcomes, but its bias for the estimated treatment effect
is not necessarily in a conservative direction [20]. An appropriate justification of LOCF
should argue that average unobserved outcomes within each randomised group do not
change over time; we have never seen such a justification. Instead, analysts more commonly
attempt to justify LOCF by the stability over time of observed outcomes, which is not a
sufficient argument [21].

2.2 Missing=failure
In some clinical areas, it is common to assume that missing values represent failures. This is
only possible when the outcome is categorical (usually binary): for example, in smoking
cessation studies (e.g. [23]). ‘Missing=failure’ is the same as LOCF when the outcome is a
measure of improvement observed at just one time point.

Like LOCF, ‘missing=failure’ makes it easy to include all randomised individuals in the
analysis. However, the underlying assumption needs to be carefully justified. In particular,
‘missing=failure’ logically implies that every success is actually observed, often a rather
implausible assumption. If the assumption is false then ‘missing=failure’, like LOCF, gives
conservative estimates of outcomes within randomised groups, but not necessarily a
conservative estimate of the difference between groups, especially if the amounts of missing
data, or their reasons, differ between randomised groups.

2.3 Complete-case analysis
In a trial with outcome measured at one time point, a complete-case analysis typically
involves a simple outcome comparison between groups or an analysis of covariance in
which the outcome is regressed on randomised group, adjusted for baseline variables. These
analyses are valid under the assumption that response is MAR given randomised group or
given randomised group and baseline, respectively, and can be viewed as likelihood-based.

In a trial with outcome measured repeatedly, a complete-case analysis would typically
exclude any individual whose outcome was not observed at the final follow-up time.
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Excluding individuals whose outcome is observed at intermediate follow-up times is clearly
inappropriate. However, in a survey of 35 such trials, 17 used a complete-case analysis [15].
Likelihood-based analysis of all observed data is preferable.

2.4 Likelihood-based methods
A likelihood-based analysis fits a suitable statistical model to all the observed data. Often
this would be a linear mixed model [24]. Likelihood-based analyses (including Bayesian
analyses) implicitly assume that the data are MAR, unless the missing data mechanism is
explicitly modelled. In the case of a trial with outcome measured repeatedly, this means that
missing data are equal in distribution to observed data, conditional on the baseline and
follow-up variables included in the analysis [5]. With non-monotone missing data patterns,
the MAR assumption can be hard to interpret [25].

2.5 Multiple imputation
Multiple imputation (MI) is a broadly applicable technique for handling missing data [26,
27]. MI is usually able to include all randomised individuals in the analysis. Briefly, missing
data are imputed more than once, in a way that reflects the uncertainty about the missing
values. In Rubin's formulation, each imputed data set is analysed by standard methods, and
the point estimates and standard errors are combined to provide inferences that reflect the
uncertainty about the missing values [26]. Standard implementations of MI [28–32] assume
MAR, although in principle MI may be performed under other missing data mechanisms.
Other formulations of MI may provide more accurate standard errors in some less-standard
settings, but are not available in standard software [33].

Many MI analyses can be viewed as computationally convenient approximations to
likelihood-based analyses based on the observed data [34]. For example, if the variables
used in imputing the missing data correspond to the variables in the analysis model and a
(multivariate) Normal assumption is made in both analyses, then a MI analysis approximates
a likelihood-based analysis. The quality of the approximation is determined by the Monte
Carlo error inherent in MI analysis, which decreases as the number of imputations increases
[35].

In some cases, an MI procedure can be improved by including in the imputation model
‘auxiliary variables’ that are not in the analysis model [36, Chapter 4]: auxiliary variables in
a randomised trial might be secondary outcomes or compliance summaries. MI then
produces estimates of the treatment effect that are genuinely different from a likelihood-
based analysis, by incorporating information on individuals with missing outcome but
observed values of auxiliary variables. However, in our experience, the contribution to such
an analysis of individuals missing the outcome of interest is moderate unless correlations
between the outcome and one or more auxiliary variables are substantial [37].

2.6 Illustration
Three different assumptions are explored in Figure 1, which depicts mean outcomes in one
arm of a randomised trial. Higher outcomes are assumed to be worse. Individuals with
complete data (the solid line) start with mean outcome 10 and improve by a mean of 2 units
at time 1, with this improvement sustained at time 2. Individuals who drop out after time 1
started with a better mean outcome and also had a mean improvement of 2 units at time 1. A
LOCF analysis (depicted in the left-hand panel) assumes that this mean improvement was
sustained up to time 2. An analysis based on MCAR (such as a complete-case analysis)
assumes that individuals who drop out after time 1 are similar to completers at time 2, which
in this example corresponds to their improvement being transient (middle panel). An
analysis based on MAR (such as a likelihood-based analysis) assumes that the missing
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outcomes at time 2 can be predicted using the relationship in completers between outcomes
at the three times. Suppose that this relationship is E[Y2∣Y0, Y1] = α + βY1 with β = 0.5,
where (Y0, Y1, Y2) are the three outcomes. The observed mean difference between
completers and dropouts at time 1 is 2 units, so the MAR assumption implies a mean
difference of 2 × β = 1 unit at time 2 (right-hand panel).

3 ITT analysis strategy
Having discussed common analyses and their assumptions, we now discuss the rationale for
the four-point ITT analysis strategy.

3.1 Attempt to follow up all randomised individuals, even if they withdraw from allocated
treatment

This point refers to the design of trials in which patients may withdraw from their allocated
treatment during the trial. Some trials do not attempt to follow up patients after treatment
withdrawal. This has four serious disadvantages. First, it is contrary to the spirit of the ITT
principle. Second, it means that all observed data are ‘on-treatment’ and so standard
analyses based on observed data attempt to estimate an ‘on-treatment’ effect and not the ITT
treatment effect [36]. (If the ‘on-treatment’ effect is really of interest then a different
approach to the design and analysis may be appropriate [4].) Third, it often makes MAR less
plausible, because individuals who stop trial treatment are often more highly selected than
those who are simply lost to follow-up. Fourth, even if it introduces no bias, it can reduce
the power of the trial if treatment effects are long-lasting [38].

We therefore believe that no primary analysis of such a trial should be described as ITT.
Instead, trials should attempt to follow up all randomised individuals, including those who
withdraw from treatment (an ‘ITT design’) [39, 40]. Individuals who have withdrawn from
trial treatment tend to be harder to follow up, but if at least some data are collected, then
analysis based on MAR can allow for treatment withdrawals and can attempt to estimate the
ITT treatment effect [36, 41].

3.2 Perform a main analysis that is valid under a plausible assumption about the missing
data and uses all observed data

This point emphasises the importance of assumptions. Any trial report should state the
assumption made about the missing data in the main analysis – for example, MAR or the
LOCF assumption – and give reasons why the assumption is plausible [42].

We require the inclusion of all observed outcome data. Analyses that exclude some observed
outcome data would not be acceptable without strong rationale such as doubt over the
integrity of the data. In particular, complete-case analysis of repeated measures data (Section
2.3) would not be consistent with the ITT analysis strategy.

The controversial point here is that we do not require the inclusion of all randomised
individuals in the main analysis – that is, we do not require inclusion of individuals with no
outcome measures – because the validity of an analysis is determined by whether its
assumptions are correct: a valid estimate of the ITT estimand is consistent with the ITT
principle. Thus, analyses of all observed data (such as mixed models) should be acceptable
if the MAR assumption is reasonably plausible in the clinical context. Harmful
consequences of requiring the inclusion of all randomised individuals in the main analysis
are given in Section 4. Of course, analyses that do include all randomised individuals are
acceptable if they make a plausible assumption: for example, in a smoking cessation trial, it
might be plausible to assume that all individuals with missing outcomes are still smoking.
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3.3 Perform sensitivity analyses to explore the impact of departures from the assumption
made in the main analysis

All analyses with missing data make untestable assumptions, so it is always important to
perform sensitivity analyses exploring the impact of departure from the assumptions [43,
44]. Appropriate sensitivity analyses should address departures from the assumptions that
are relevant for the estimand at hand in an accessible way.

Unfortunately, many sensitivity analyses used in practice are inappropriate. For example, in
one survey, the most common form of sensitivity analysis was LOCF when the primary
analysis adopted a complete-case analysis [15]. Agreement between the results of LOCF and
complete-case analysis is not necessarily reassuring because the assumptions underlying the
two methods could both be wrong, and so both results could be biased. Figure 2 illustrates
this problem. Although LOCF and MCAR impute the missing values at time 2 in different
ways, they both impute the same mean value, 7. It would be wrong to derive reassurance
from this agreement. In fact, an MAR analysis would impute a different value, 6.

Instead, a ‘principled’ sensitivity analyses should move smoothly away from the
assumptions underpinning the primary analysis, in a way that is clinically plausible and
accessible to those interpreting and using the study results. Kenward et al. describe the
procedure thus: “It is necessary to properly parameterise the set of models considered by
means of one or more continuous parameters and then to consider all or at least a range of
models along such a continuum” [45]. For example, one might define a parameter δ equal to
the difference between the mean of the observed data and the mean of the unobserved data,
adjusted for other observed variables. Under an MAR analysis, δ is assumed to be zero. A
sensitivity analysis would consider plausible alternative values of δ. It is important to
consider the possibility that δ differs across randomised groups: for example, missing data
after a psychological intervention may be further from MAR than after no intervention [46].
This idea underlies computational [47–49] and graphical [50, 51] approaches to sensitivity
analysis.

We have focussed here on sensitivity analyses to the untestable assumptions about the
missing data; it is also important to verify testable assumptions, such as a Normality
assumption for outcome data, or the way baseline covariates are entered in the model [4],
although estimated treatment effects are usually far more robust to departures from testable
than untestable assumptions.

3.4 Account for all randomised individuals, at least in the sensitivity analyses
A key feature of a principled sensitivity analysis as described above is that all individuals
must be included in the analysis. For example, if δ ≠ 0 so that missing values differ from
observed values, then a complete-case analysis is no longer acceptable. Thus, although an
analysis based on MAR need not include all randomised individuals, analyses assuming
departures from MAR must include them.

This point provides a key link with previous conceptions of intention-to-treat analysis:
inclusion of all randomised individuals is important, but the place of that inclusion is in the
sensitivity analysis.
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4 Harmful consequences of requiring inclusion of all randomised
individuals in the main analysis
4.1 Implausible assumptions

We compare LOCF and likelihood-based analyses (noting that complete-case analysis of a
trial with outcome measured at one time point is effectively a likelihood-based method). The
different assumptions underlying these methods were described in Section 3. The methods
also differ in which randomised individuals are included: if the baseline observation is
complete then LOCF includes all individuals in the analysis, but likelihood-based methods
exclude individuals who provide no post-baseline outcome data.

The MAR assumption is often seen as a natural starting point for analysis [17, 52]. A
stronger belief in MAR than other assumptions led Molenberghs et al. to write, “A
likelihood based ignorable analysis should be seen as a proper way to accommodate
information on a patient with postrandomization outcomes, even when such a patient's
profile is incomplete” and “This fact, in conjunction with the use of treatment allocation as
randomized rather than as received, shows that [a mixed model analysis] is fully consistent
with ITT” [17]. These authors do not explain what they mean by ITT, but seem to be
arguing that if an analysis is suitable, it must conform to ITT.

We avoid blanket statements about the plausibility of particular assumptions: this must
instead be determined in each trial using subject-matter knowledge. However, in some trials,
MAR is more plausible than the LOCF assumption. In such trials, an MAR-based analysis
excluding individuals who provide no post-baseline outcome data would be preferable to an
LOCF analysis including them. Thus requiring inclusion of all randomised individuals in the
main analysis would invite analysts to adopt a less plausible assumption.

4.2 Unnecessary complexity
We now describe two situations where simple analyses that do not include all randomised
individuals are approximately equivalent to, and make the same assumption as, more
complex analyses that do include all randomised individuals.

First, when a likelihood-based analysis is used, baseline values of the outcome can be
included either as a covariate or as an outcome [53, 54]. For example, a trial with outcome
measured at baseline and one follow-up time can use either an analysis of covariance
(ANCOVA) or a mixed model with baseline and follow-up as a bivariate outcome. These
methods give identical point estimates and very similar standard errors when the baseline is
complete [53]. They also give very similar results when the baseline is incomplete, provided
a suitably modified ANCOVA avoids dropping individuals with missing baselines [55, 56].
However, the analysis using baseline as an outcome includes all individuals with the
outcome observed at baseline or follow-up, whereas the analysis using baseline as a
covariate includes only those individuals with the outcome observed at follow-up.

Second, MI may be a computationally convenient alternative to a likelihood-based analysis
(Section 2.5), and it typically includes all individuals in the analysis; but in the absence of
strong auxiliary variables, MI may be inferior to likelihood-based analysis unless the
number of imputations is large enough to minimise Monte Carlo error. However, authors'
desire to include all randomised individuals in the analysis favours MI: for example, in a
trial of a web-based self-help intervention for problem drinkers, the authors claimed “We
then performed intention-to-treat analysis, using multiple imputation to deal with loss to
follow-up” [57].
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In both cases, requiring all randomised individuals to be included in the analysis would
invite analysts to adopt an unnecessarily complex analysis, with consequent greater
opportunity for human error.

5 Case study: the UK700 trial
We use the UK700 trial to illustrate both the ITT analysis strategy and the arguments of
Section 4. This trial compared intensive case management with standard case management
for 708 people with severe mental illness living in the community [58]. We here consider
two outcomes: psychopathology score (CPRS) and satisfaction with services (SAT), which
were measured in interviews at baseline, year 1 and year 2. A third outcome, days in hospital
for mental health reasons (HOS), was recorded at baseline and year 2 from hospital notes
and therefore had few missing values. Key variables are summarised in Table 1.

Missing data in CPRS occurred mainly when individuals did not attend interviews at years 1
and 2. Missing data in SAT occurred additionally because the variable was not included in
early versions of the baseline interview and because some interviews were incomplete (SAT,
unlike CPRS, came near the end of the interview). Missing data patterns are summarised in
Table 2.

5.1 ITT analysis strategy for UK700
For point 1, attempts were made to follow up all randomised individuals.

For point 2, we need a plausible assumption for a main analysis. In this mental health
setting, individuals with missing values may have worse psychopathology and greater
dissatisfaction than observed individuals, and their psychopathology and dissatisfaction may
have worsened over time. Thus neither the LOCF assumption nor MAR seems entirely
satisfactory. The published analysis was based on an MAR assumption, and we follow that
here, recognising that sensitivity analysis to departures from MAR will be essential. We can
make the MAR assumption more plausible (and possibly gain precision) by including in the
analyses the third outcome, HOS, which was more completely observed than CPRS and
SAT: this will be done in a sensitivity analysis. The assumption underlying LOCF cannot be
amended to account for HOS.

The chosen main analysis is therefore a mixed model for CPRS or SAT, using all the
observed data at all three time points, and adjusted for trial centre and the baseline value of
the outcome variable. Covariate effects varied by year (that is, the model included
interactions between year and covariates); treatment effects also varied by year but were
absent at baseline. Outcome covariance matrices were unstructured but equal across arms.
The estimated intervention effect (95% confidence interval) was -0.39 units (-2.40 to +1.62)
on CPRS and -0.35 (-1.15 to +0.45) on SAT.

For the SAT analysis, 101 randomised individuals have missing baseline values but one or
more observed outcomes. Suitable methods for including these individuals in the analysis
can be surprisingly simple, because the role of baseline covariates in randomised trials is
only to increase power and not to remove confounding [55]. Thus mean imputation methods,
which are inappropriate for missing covariates in non-randomised studies [59], are
appropriate for missing baseline values in randomised trials, provided that the imputed
values respect the independence of baseline values and randomised group [55]. In the
analysis described above, missing baseline values of SAT were imputed by the centre-
specific mean of the observed baseline values.
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For point 3, we require sensitivity analyses exploring the impact of departures from the
MAR assumption: we illustrate them for the CPRS outcome. The main analysis assumed
that δ = 0, as defined in Section 3.3. Positive values of δ indicate that missing individuals
have worse psychopathology than observed individuals, which seems the likely direction of
departure from MAR in a mental health context. Let f1 and f0 be the fractions of individuals
with missing outcome at the final time in the intervention and control arm respectively: in
the UK700 data, f1 = 0.12 and f0 = 0.20. The sensitivity analysis is done by adding a
quantity Δ to the treatment effect estimated under the MAR assumption, where Δ = f1δ if
data depart from MAR in the intervention arm only, Δ = −f0δ if data depart from MAR in
the control arm only, and Δ = (f1 − f0)δ if data depart from MAR in the same way in both
arms. We allow δ to take values from 0 to 10: since the standard deviation of CPRS is 14
(Table 1), this represents a fairly wide range. We make the approximation that the standard
error of the parameter estimate is unaffected by the sensitivity analysis: other work, the
subject of a future report, shows that this approximation works well over a wide range of δ.
More generally, we could allow δ to take values δ0 and δ1 in the intervention and control
arm respectively, so that Δ = f1δ1 − f0δ0. A fuller treatment of sensitivity analysis, including
expert elicitation of the range of values for δ, is given in [60].

Figure 3 shows how the estimated intervention effect varies in the sensitivity analyses.
Departures from MAR have more impact in the control arm than in the intervention arm,
because f0 > f1. Under MAR, the trial showed no significant benefit of intervention; for this
conclusion to be changed would require missing CPRS values to average some 8 points
(more than half a standard deviation) more than the observed values in the control arm only,
which seems relatively implausible.

A second sensitivity analysis used MI with auxiliary variables to make better use of the
observed data and to make the MAR assumption somewhat more plausible. The auxiliary
variables were the baseline and follow-up values of the other two outcomes (HOS and CPRS
for SAT; HOS and SAT for CPRS). MI was implemented by the MICE algorithm
[28,61,62]. Monte Carlo error was reduced by using 1000 imputed data sets [63]. The
estimated intervention effect (95% confidence interval) was -0.43 units (-2.43 to +1.58) on
CPRS and -0.40 (-1.20 to +0.39) on SAT, which show much less difference from the main
results than does the sensitivity analysis in Figure 3.

For point 4, all randomised individuals are included in this set of analyses, because each
missing individual contributes to one of the quantities f1 or f0.

5.2 Comparison of different analyses
We performed further mixed model, LOCF and MI analyses to illustrate the arguments of
Section 4.

We first consider results ignoring the year 1 data (Table 3, top part), thus illustrating results
for a trial with outcome measured at one time point. ANCOVA with mean-imputed missing
baselines and a mixed model with baseline as outcome give almost identical results for
CPRS and very similar results for SAT; greater differences are expected for SAT since it has
more missing values at baseline. MI, using a basic imputation model including all variables
from the analysis model, gave results very similar to the other methods. However, these
three analyses that give similar results, and rest on similar assumptions, include very
different numbers of individuals in the analysis.

We next consider analyses using data from all three time points (Table 3, lower part). The
LOCF estimate differs substantially from all the other estimates for CPRS and has smaller
standard error than the other methods, because its implicit assumption allows more
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information to be drawn from individuals with missing data: this suggests that greater
caution needs to be attached to LOCF analyses. Mixed model analysis of available cases
gives very similar estimates whether baseline is included as a covariate or as an outcome.
MI using a basic imputation model agrees closely with mixed model analysis of available
cases, and MI using the extended imputation model of Section 5.1 shows small changes as
noted there. Again, methods based on the same missing data assumption – mixed models on
available cases, whether with baseline as outcome or covariate, and MI using the basic
imputation model – give very similar answers, as theory suggests, despite including very
different numbers of individuals.

These results illustrate that the choice of assumption matters far more than how many
individuals are included in the analysis.

6 Discussion
We believe that excessive focus on including all individuals in the analysis of randomised
trials with missing outcomes can lead to a choice of analysis that rests on implausible or
unnecessarily complex imputation. In the ITT analysis strategy, we have therefore proposed
that the main focus in choosing the analysis should be the plausibility of its assumptions,
while inclusion of all randomised individuals is a requirement only for sensitivity analyses.

Our approach has been to obtain the best possible estimate of the intervention effect. Some
analyses, particularly LOCF, are popular because they are believed to be conservative, but
this is misguided [20]. It is hard to be sure that an analysis is conservative without
attempting to compare it with an unbiased estimate of the intervention effect. We believe
that conservatism is best achieved by attempting unbiased estimation but appropriately
allowing for the uncertainty due to the missing data [46].

We have discussed incomplete quantitative outcomes. Our proposal for an ITT analysis
strategy applies equally well with other outcomes. However, some different modelling
issues arise. For trials with repeatedly measured incomplete binary outcomes, when interest
lies in a treatment effect on the log odds scale, complications arise because of the
differences between ‘population-averaged’ and ‘subject-specific’ approaches [64]. The goal
of ITT analysis is usually a population-averaged odds ratio, which can be directly estimated
by generalised estimating equations and multiple imputation, but not by mixed models,
which directly estimate the subject-specific odds ratio. For trials with time-to-event
outcomes, the missing data are the censored outcomes, and in practice the plausible
assumption about the missing data is nearly always that censoring is non-informative
(similar to an MAR assumption). Methods for sensitivity analysis to informative censoring
are not well developed.

Our considerations have led us to propose a framework for ITT analysis with missing data
that complements and extends the CNSTAT report [4]. We believe that if trialists follow this
framework then there is scope for considerable improvement in the appropriateness,
consistency, and reporting of ITT analyses when outcomes are missing. However, the best
approach to missing data is always to design and conduct the trial to maximise data
collection [2, 3]. A careful ITT analysis strategy, and in particular an appropriate sensitivity
analysis, recognises the increase in uncertainty that arises from missing outcomes, and
therefore increases the incentive for researchers to maximise their data completeness.
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Figure 1.
Mean profiles in one arm of a hypothetical randomised trial for individuals who have
complete data (solid line) and those who drop out at time 1 (dashed line), illustrating three
possible assumptions for missing data at time 2 (dotted line).
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Figure 2.
Mean profiles in one arm of a hypothetical randomised trial for individuals who have
complete data (solid line) and those who drop out at time 1 (dashed line), showing how
LOCF and MCAR can agree without necessarily being correct.
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Figure 3.
UK700 trial: sensitivity analysis for departures from MAR. The basic analysis is the mixed
model with CPRS as outcome and baseline CPRS as covariate using available cases. The
parameter δ is the difference between missing and observed CPRS, adjusted for baseline
CPRS, in one or both arms. Vertical bars are 95% confidence intervals.
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Table 1
UK700 trial: data summary

Variable % missing Values Mean SD

Centre 0% 0/1/2/3

Randomised group (standard/intensive) 0% 0/1

CPRS: psychopathology score

 baseline 0.4% 18.8 12.7

 year 1 16.2% 17.2 13.1

 year 2 16.0% 18.3 13.8

SAT: satisfaction score 1

 baseline 19.4% 18.9 4.8

 year 1 27.8% 17.2 4.7

 year 2 30.8% 16.9 4.8

HOS: days in hospital for mental health reasons over past 2 years

 baseline 0.1% 108.9 112.6

 year 2 4.1% 73.3 117.8

1
Higher values denote lower satisfaction.
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